
Software Testing Plan

April 3rd, 2020

Canopy - Team 11

Team Members:
Robert Plueger

Dongyu Xia
Maria Granroth

Sponsor: Dr. Patrick Jantz, Ph.D.
Mentor: Scooter Nowak

Version 1.2

Table of contents
Intro…………………….……….……….……….……….……….……….……….……….………....… 2
Unit Testing…………………….……….……….……….……….……….……….……….……….. 3 - 6

Statistical Functions…………………….……….……….……….……….……….………. 3 - 4
Number of Observations…………………….……….……….……….……….……... 3
Time of Year………………………….……….……….……….……….……….…. 3 - 4
Density of Observations…………………………….……….……….……….………. 4
Standard Deviation of the Density of Observations………………………….….…. 4
Average Canopy Height…………………………….……….……….……….………. 4
Data Quality…………………………….……….……….……….……….……….…... 4

Clustering (Classify Forest Type)………………………….……….……….……….……. 4 - 5
Email Validation…………………….……….……….……….……….……….……….…... 5 - 6

Integration Testing………………………….……….……….……….……….……….………...…. 7 - 8
Usability Testing………………………….……….……….……….……….……….………....….. 9 - 10
Conclusion……………………….……….……….……….……….……….……….……….…..……. 11

1

Introduction

This project is to develop an application for better understanding forest structure and
health. The client of this project is Dr. Patrick jantz. He is a member of the NAU
Vegetation Structure as an Important Biodiversity Variable Project. His work is to analyse
vegetation structure data from the Global Ecosystem Dynamics Survey (GEDI). The
analysis can be used to improve land use decisions and protect the biodiversity in
tropical landscapes. However, there are some problems with his current workflow.
Analyzing the data by the R language is inconvenient, and the process is time
consuming. The results are hard to understand or comprehend for most people. The
application we developed will help users automatically analyze the GEDI data and will
reduce the time and energy used. The result will also be easier to understand.

In order to ensure that all functions can run as expected, we will conduct software tests.
In the process of software testing, we will first conduct unit testing. Unit tests make it
easy to troubleshoot problems that may arise, and can also ensure that each unit is
functioning as expected. We will use the data written by ourselves for the temporary
testing of each module, which is simpler and faster for the unit tests. The GEDI data test
will be carried out in the integration test. When we conduct integration testing, it can
ensure mutual cooperation between different modules. Finally, we will do usability testing
to ensure that our application is user-friendly and customers can use our products to
replace our client’s previous workflow.

In unit testing, we will use PyTest to test Statistical Functions, Clustering (Classify
Forest Types), and Email Validation. Because we only need to perform some small
tests, PyTest is appropriate and can be successfully integrated with our existing code
and systems. At the same time, we will also use valid and invalid data for testing to
ensure that he will not output wrong results. In integration testing, We will test whether
the interaction between each unit can work as we expect. In usability testing, we will
design questionnaires to ensure that our product is user-friendly. Our plans for each
testing category will be explained further in this document.

2

Unit Testing
The first step of our testing plan is to do unit testing. Unit testing is the process of testing
the smallest possible individual components of a system. Its goal is to determine if all
components are working as intended. Our general procedure will be to test each function
using the PyTest framework to streamline the tests and help us with gathering metrics.
For the metrics in particular, we will use PyTest’s pytest-cov plugin, which tests code
coverage by determining if all of the lines of code in a given unit are ran during a test.
This will help us determine if our testing has covered all of the code that needs to be
tested. PyTest seemed appropriate, as we only need small tests performed, and it
seems that it will smoothly integrate with our existing code and system. In this document,
we will be outlining tests for the following units:

● Statistical functions
○ Number of Observations
○ Time of Year
○ Density of Observations
○ Standard Deviation of the Density of Observations
○ Average Canopy Height
○ Data Quality
○ Classify Forest Types (see clustering, below)

● Clustering (Classify Forest Types)
● Email validation

Statistical Functions
We will test the statistical data that users need to use when analyzing data.
Because GEDI data is large and needs a lot of time to run, it is not suitable for
testing functions. We plan to write unofficial data to test. The unofficial data can
reduce the testing time and it is easy to change the data to be invalid for further
testing. Each statistical function will have its own equivalence partitions and
boundary values.

Number of Observations
This function will count how many observations have been made in this
data. In brief, this function will count how many pieces of data are in the
files. Here, we divide the input file to three equivalence partitions: a file
with no data, one with only 1 piece of data, and one with 10 pieces of
data. If the result of the function is 0, it means the file is invalid, and the
function shouldn’t work. The boundary value is 1. If the result of the
function is 1, it should be output as 1. The same with 10 pieces of data
file.

3

Time of Year
This function will output the observation time of this data. GEDI is an
Earth Ventures mission that started in December 2018 and takes two
years. The time of year should be between 2018 and 2020. The result out
of this range should be invaild.

Density of Observations
This function will output the observation density of the area, It needs to
call the Number of Observations function, and read the area data in the
data, then the calculation result is output. The area should be positive, so
the input data will be divided into two equivalence partitions: positive
value and non-positive value. If the value is non-positive, the function
shouldn’t work.

Standard Deviation of the Density of Observations
This function will input the standard deviation of the observation.
According to the formula of standard deviation, there should not be less
than 2 pieces of data to calculate. We divide the input into three
equivalence partitions: no-data file, 1 piece of data file and 2 pieces of
data file. The boundary value is 2 pieces of data file. The non-data file
and 1 piece of data file should return NAN. The file with 2 pieces of data
will output normally.

Average Canopy Height
This function will input the average height. Because it is height, all the
data should be positive. So the input data will be divided to negative, zero
and positive. The boundary value is 1. The zero and negative should be
invaild.

Data Quality
This function will input the average of the quality flags. According to GEDI
data, flags here are 0 and 1. So we will divide the input data to 0-1 data
and non-0-1 data. When the function meets non-0-1 data, it shouldn't
work.

Clustering (Classify Forest Types)
We will be using clustering to sort and classify the various forest types found in a
given area. Our goal is to implement three clustering algorithms: HDBScan,
kmeans, and hierarchical. All three algorithms would be performed on the same
data, and the best performing algorithm for that dataset would be chosen and

4

presented to the user. Since they will be run on the same data when our
application is used, the algorithms will be tested the same way. The tests will still
be run individually, but the methods and inputs chosen follow the exact same
logic. Each of these algorithms will be implemented using clustering modules
provided by the scikit-learn machine learning library. As a result, we can use the
datasets provided in scikit-learn examples as our inputs. These 3 datasets will
act as valid inputs for their respective algorithms only, because we want to use a
guaranteed 100% correct input when testing validity.

Most clustering algorithms can technically cluster any dataset, even if the data
does not have natural groupings. This makes it difficult to test most inputs,
because there is usually not a clear “right/wrong” answer. In the case of these
tests, we can use the adjusted Rand index function from the scikit-learn library.
This function compares the similarity between cluster results and the “truth”
values, which are both lists of labels that define how the clusters are laid out. If
the rand index function returns a negative number or 0, then the results are
considered “bad”. If the function returns a 1, then the results are perfect. The
function can return a decimal between 0 and 1. Because we will be using preset
datasets as the inputs, we will expect a perfect score of 1 from this function to
consider the test as passed. In order to use this testing method, we will need to
use the same datasets, which already have set truth values, and adjust the data
in the set so that the clustering results will not end up with the expected values.
There is no clear way to decide boundary values for these tests without testing all
possibilities for the datasets, so the datasets will be adjusted semi-randomly.
Since we are using the adjusted Rand index, there are only 2 ranges to consider
for equivalence partitioning: generally “incorrect” results and “correct” results.
With this function, there is no specific limit of what can and can’t be correct, so it
is simplest to divide it clearly between 0 and 1.

Email Validation
The user will be entering an email address in order to receive their requested
data back. We will have to make sure the email address they enter is valid. Thus,
we will be implementing a test to ensure the user doesn’t enter anything that is
unreasonable. Given that the user input is non-numerical, there are no boundary
values, and we will be focusing on what inputs are considered valid.

To be a valid email address, there may not be any special characters within the
address, i.e. !, #, $, etc. Additionally, the address must contain exactly one “at”
symbol (@). There must be some amount of letters or numbers on the left hand
side of the “at” symbol. To the right of the “at” symbol, there must be a valid
domain and domain extension. The domain can only contain alphabetical
characters. There should be a single period (.) separating the domain and the

5

valid domain extension. This domain extension can be .com, .net, .edu, etc. We
will pass in strings that do and do not satisfy these conditions to determine
whether or not they’re valid. All of these criteria must be met for the test to pass.

6

Integration Testing
After unit testing is performed to determine if the individual components perform as
intended, integration testing is used to test the interactions between the units. In other
words, it tests whether different parts of the system pass the necessary information
correctly between each other.

We split the modules which interact with each other into the following parts:

● User selection
● User email input
● Data retrieval
● Perform statistical functions
● Perform clustering
● Graph clustering results
● Generate statistical summary
● Email results

Diagram 1 - System workflow displaying the modules and how they are linked to other modules.

Diagram 1 shows that there are eight modules that integrate with each other, and seven
of them require testing. The red colored boxes show the modules that will be tested with
integration testing. The green colored boxes show the modules that are being tested
with unit testing. Since these modules are already being tested, we will not discuss them
in this section. The blue colored box shows the module that does not require testing.
This module is based on predetermined inputs that the user selects without external
variability, so we will not discuss them in this section, either.

7

Retrieve Data
Once the user submits their request, we will have to make sure they retrieve the
correct information from the correct region. We will create tests that ensure that
each country that is selected corresponds to the correct set of GEDI data.
Similarly, we will create tests that ensure each statistical function that is selected
corresponds to the correct mathematical computation. The final potential issue is
when a user inputs their own shapefile. We will create tests to determine whether
the data we pull from the database intersects the boundaries of the user’s
shapefile (as in, lies within the region specified by the user).

Graph Clustering Results
We will be outputting a graphical representation of the clustering algorithms
performed. Given that the clustering algorithms are being unit tested, that
dramatically increases the probability that the graphical output will also be
correct. Additionally, automated testing is difficult with graphs, so we will be
manually testing this module. We will be looking at the graphical outputs to
determine whether any errors occurred. Any graphical misinformation should be
glaringly obvious given that they are a direct result of the clustering algorithms.

Generate Statistical Summary
Similarly to graphing the results, generating the summary is a direct result of
another module. In particular, it is a direct result of the statistical function
operations. Since we will just be rewriting the results of the statistical functions
into a .csv file, and since the statistical functions are being tested with unit
testing, there is an unlikelihood for errors. Thus, we will be manually looking at
the .csv file and comparing the results to the respective statistical functions to
determine if there are any incorrect numerical values or any misplaced values.

Email packaged results
The user will be receiving via email either the graphical clustering results, the
generated statistical summary, or both in a ZIP file. To test this, we will simply
review the emails generated with all three possible options. We will be making
sure the email is sent properly, and that any requested information is correctly
attached. To further ensure the validity of the email sending process, we will
extract the ZIP file and make sure that the included files contain correct and
accurate information.

8

Usability Testing
If the integration testing was successful, then usability testing is next. Traditional usability
testing has real people interacting with your application. There are variations on how
they are observed and if/how the moderator asks questions (if there is one at all), but its
general goal is to determine if the application is usable for a general audience. “Usable”
would mean that the user can navigate the application efficiently and that the application
is functional for them.

Our project is meant to be used by a wide variety of people interested in GEDI data,
which may include both scientists and people who do not have a scientific background. If
the website is poorly designed, then someone may choose the wrong area or the wrong
function for analysis, which could result in a decision-maker choosing to cut down the
wrong forest or someone’s reputation being ruined. Because of this, we should have a
range of testers. The categories of testers would be: scientists familiar with GEDI data,
scientists not familiar with GEDI data, and non-scientists. These categories will provide
variance in tester experiences, which will help us determine all of the possible ways a
user could interpret our application. Ideally, we would have 3 or more testers in each
category to have more rounded testing and even more variance in experience.

To choose testers, we will mostly find people via networking. We will ask our capstone
mentors and our sponsor, Dr. Jantz, for people that might fall under either of the
categories related to scientists. Dr. Jantz will not be a tester in this scenario, as he
helped us design the application and knows how it should be used.

Our testing will be loosely moderated, meaning that one of us from the team will present
the application to a user, ask them to do a specific task, then ask them follow up
questions. Due to recent events, it would be irresponsible to perform the testing in
person unless the subject is part of the moderator’s household. The majority of subjects
will not be household members, so the test will be conducted via Zoom and the subject
will share their screen so the moderator can follow the cursor movements and take
notes. The subject may ask any questions during the test, and the moderator will answer
them and note the question. The moderator will also ask the subject why they asked the
question.

Since our user flow is straightforward without much variance in paths, the difference in
tasks is mainly through the area and the type(s) of analysis chosen. The follow up
questions will be posed through a Google survey consisting of both closed and
open-ended questions. The survey will be emailed to the subject immediately after the
test, and the subject will be directed to fill it out right away. The questions included will
be:

9

1. Are you a professional or student researcher?
a. Professional
b. Student
c. Not a researcher

2. If you are a researcher, what is your background?
3. What do you know about GEDI?
4. Who could you see using the website?
5. How easy was it to navigate the website?

a. Very easy
b. A little easy
c. A little hard
d. Very hard

6. Why did you choose that answer for the last question?
7. Were you able to understand the results?

a. Yes
b. No
c. Other:

8. Were you frustrated with anything while using the website? If so, what?
9. Any suggestions for us?

Moderator notes and survey answers will be considered manually, since the resulting
data is largely qualitative. We plan to use the data to improve usability and reassess
website layout if needed. While testing typically continues throughout the lifespan of an
application, this usability testing portion will wrap up our testing plan and prepare us to
present our final application before handing it off to our sponsor.

10

Conclusion
This project is to develop an application for better understanding forest structure and
health. The application will help users automatically analyze the GEDI data and will
reduce the required time. The result will also be easy to understand. To meet all of our
client’s requirements, we designed a software testing plan. Our software testing plan is
to do the unit testing first, using PyTest to ensure that the functions of the Statistical
Functions, Clustering (classification forest types), and Email Validation are
implemented as expected. We will use valid and invalid data to test to make sure the
function will not output the wrong result. Then we will do the integration test, to make
sure the eight modules can cooperate with each other. The final step is usability testing.
We will select testers to use our products, and then let them do a questionnaire survey to
judge whether our application is user-friendly. We will also let our customers use it to
judge whether this can replace our client’s previous workflow.

So far, we have completed a large portion of the functions our client expects our
application to perform. We have also made corresponding test plans to ensure that the
functions we have completed can run as we expect. After completing the test, our
application can be considered complete. Next, we will continue to improve our project
and strengthen documentation and communication with our client in order to pass on our
project to him.

11

